
Modeling images of natural 3D surfaces:
overview and potential applications

Abstract— Generative models of natural images have long been
used in computer vision. However, since they only describe the
statistics of 2D scenes, they fail to capture all the properties of
the underlying 3D world. Even though such models are sufficient
for many vision tasks, a 3D scene model is needed when it comes
to inferring a 3D object or its characteristics. In this paper, we
present such a generative model, incorporating both a multiscale
surface prior model for surface geometry and reflectance, and
an image formation process model based on realistic rendering,
that accounts for the physics of image generation. We focus on
the computation of the posterior model parameter densities, and
on the critical aspects of the rendering. We also discuss how to
efficiently invert the model within a Bayesian framework. We
present a few potential applications, such as asteroid modeling
and planetary topography recovery, illustrated by promising
results on real images.

I. I NTRODUCTION

The model we study in this paper is intended to describe 3D
natural surfaces such as planetary or asteroid relief, as well as
optical images of these surfaces, taken under different viewing
and lighting conditions.

Natural image statistics can be efficiently described by 2D
models, as shown in various studies such as [1]–[5]. These
image models are mostly bidimensional, and they capture
some of the characteristics of natural objects, such as scale
invariance, spatial adaptivity and various roughness or regu-
larity properties. Within a Bayesian framework [6], they can
be used to infer the model parameters from an observation (or
a set of observations), thus providing estimates of the modeled
characteristics.

However, an image is not a simple representation of a
natural 3D object, it is in fact a measurement, corrupted by
blur and noise, of a 2Drenderingof such an object. Therefore
it is not appropriate, in general, to model an image directly
as a natural phenomenon, and there is usually no simple
correspondence between the inferred model parameters and the
surface parameters (the former are usually a complex mixture
of the latter), except in some simple cases [7]. Therefore the
imaging model should be taken into account. Furthermore, the
object model should relate to the physical properties of the
studied surface, such as shape, reflectance, roughness etc.

We propose to build a full generative model that combines a
3D surface model with a realistic imaging process to describe
both the scene and the various observations of this scene. This
model is described in Section II; the surface model includes
topography, reflectance and various hyperpriors, whereas the
imaging model consists of an accurate rendering algorithm
followed by a degradation process. Our contribution consists of

both the surface model and the rendering technique. However,
the main contribution of this paper is to derive a complete gen-
erative model for images of natural surfaces. After describing
the forward problem, in Section III we detail a few potential
applications to computer vision using Bayesian inference,
show preliminary results and discuss the related challenges.

II. GENERATIVE MODEL

We first define a surface modelS which consists of a
set of 3D verticesv (geometry) forming a triangular mesh,
and scalar albedosρ, one for each triangle. We assume that
all the parameters are random variables governed by a joint
probability distribution. The geometry model is described in
Section A. It comprises a set of coefficientsw (wavelet
transform ofv) conditioned upon the roughness parametersλ,
γ andq. The reflectance model is described in Section B and is
made of coefficientsω (wavelet transform ofρ) of roughness
parametersε; we also define a model mapm and scattering
parametersκ. The camera and light parameters are denoted
by Θ. An imageI is obtained fromS and Θ by rendering,
as explained in Section C. Any observed imageX depends
on I and Θ through a degradation model given in Section
D. The relationships between all these variables are given as
a graphical model in Fig. 1, where each arrow represents a
conditional density, and each leaf node a prior density.
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Fig. 1. Graphical model, or hierarchy of the random variables in the proposed
generative model, includingrendering andinverse wavelet transform(IWT).

A. Multiscale surface geometry model

Fractals have long been used to synthesize realistic looking
planetary terrains, because of their resemblance to natural
objects [1], [8]. From a qualitative point of view, they certainly



exhibit similar statistical properties, such as scale invariance.
We propose to derive a multiscale roughness model that
accounts for these properties, by building an appropriate
probability density function of the vertex variablesv.

In this paper, we are interested in modeling any kind
of surfaces, such as asteroids or entire planets, which are
topologically different from flat open landscapes commonly
used in terrain simulation. For this purpose, we choose to
use a subdivided mesh [9] as the topological support ofv.
On each site of this support lies a 3D vertex variable. This
support is semi-regular, since we start from a root mesh of
fixed connectivity (such as a hexagonal grid in the planar case,
or an icosahedron in the spherical case), then we subdivide it
regularly by recursively adding a vertex between each pair of
existing vertices (see Fig. 2).

Fig. 2. Subdivision scheme used to produce a finer mesh from an existing
triangular mesh: a new vertex (white) is added between each pair of 2 vertices
(black), using a prediction or interpolation rule.

A possible way of studying fractals is to look for statistical
self-similarities. Simple probabilistic estimators can be used
instead of looking for repetition and scaling of particular
geometrical shapes. If there is a scale invariant probability
function fitting to the data, the object is said to be statistically
scale invariant, and we can call it fractal. Usually a spectral
representation such as the Fourier transform (when available)
gives access to the distribution of the average size of object
features as a function of the scale, regardless of the location.
For perfect spherical objects, spherical harmonics provide a
powerful spectrum analysis tool. However, the surfaces we
model have an irregular sampling in general, since the radius
variations are large w.r.t. the object radius, therefore we prefer
to use a more flexible tool such as wavelets in order to access
the scale of geometric features.

1) Wavelet transform of a surface:Now that the topology
is properly defined, how do we deal with the 3D geometry?
The key point of this subdivision scheme is the new vertex
prediction, which is achieved by interpolation. The simplest
is to take the midpoint of the edge, but leads to an unwanted
piecewise planar surface. Therefore we prefer using a smooth
scheme [10], involving 8 parents for each new vertex instead
of 2. We use this scheme in the regular case (both edge
vertices have 6 neighbors), otherwise we use another one [11].
If V (vj) denotes the 8 neighbors of a new vertexvj , the
prediction function is denoted byBj (V (vj)).

A subdivided mesh at levelJ is given. The basic idea is
to split the sites into two interleaved sets: the topological
midpoints and their closest parents (respectively white and
black points on Fig. 2). Then, the former are predicted from the
latter usingBj . The difference between actual and predicted
vertices gives us thewavelet details, since it represents at each
level the difference between a smooth approximation and the

actual surface. These details are topologically located at the
same ”white” sites as the midpoints, of indexj:

wj = vj −Bj

(
V (vj)

)
(1)

Without lifting, the wavelet functions would not have sufficient
smoothness properties, such as spectral selectivity, needed to
capture scale properties of natural surfaces. Therefore we use
the lifting scheme [12], consisting of adding to each ”black”
vertex (indexk) a linear combination of the nearest wavelet
details at the ”white” sites (indexj). We chooseτ = 3/4.

vk ← vk + τ
∑
j∼k

wj (2)

Finally, the wavelet transform is performed by recursively
applying Eq. (1) to the ”white” sites then the lifting at the
”black” sites, in the reverse order from the subdivision,N
times. The result isN levels of details, plus one coarse
approximation of the mesh at subdivision levelJ − N . It is
simple to invert, starting with the lifting step and replacing
the addition by a subtraction in Eq. (2), then inverting Eq.
(1) which consists of predicting the midpoints by usingBj

and adding the coefficientswj . Filtering the detail coefficients
provides a simple mesh smoothing technique [13].

2) Local scale and direction:The wavelet functions are
actually defined in a topological space, which is semi-regular,
and do not reflect the local geometry of the studied object.
Thus, the coefficients encode absolute variations of the ge-
ometry between two approximation levels, regardless of the
size of the triangles in the mesh. However, a given variation
does not have the same physical meaning for different point
densities. To account for that, we define the notion of local
scale. This scale has nothing to do with the (integer) levels
of the transform: at a given level there is a mixing of various
scales depending on the local mesh density. The local scale
for vj is defined so that we can account for local deformation
of each triangle (see Fig. 3).L is the length of the edgevavb

in the approximation mesh (j is the midpoint of(a, b)), l
is a distance fromvj to a parent of order 2, and the angle
α encodes the skew of the triangle. The scale is actually an
average of the scales of both triangles sharing the same edge.

sj = L

(
3
4

L2

l2
(cos α + sinα)2 + 4

)−1/2

(3)
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Fig. 3. Local deformation of the mesh around a wavelet coefficient as the
midpoint of the edgea1a2: definition of the lengthsL and l, skew angleα.

Like the approximation coefficients, the wavelet details are
3D vectors. The former have an obvious meaning, i.e. the same
object at a coarser resolution, whereas the latter embed details
both along and orthogonal to the surface. To provide a really
useful transform, we have to separate these two components,



respectively the real geometric details (variations normal to the
surface, denotedw⊥

j ) and the surface sampling irregularities
(variations parallel to the surface denotedw‖

j ).
3) The surface model:Using wavelets on meshes we can

perform the multiresolution analysis [14] of a surface for any
topology, defined on a subdivided mesh. We have used such
a representation of the asteroid 433 Eros; the geometry was
given by the NEAR mission [15]. This way we have checked
that this object is statistically scale-invariant. As shown in Fig.
4, the amplitude spectrumA, estimated by the spatial average
of the amplitude of the geometric details< |w⊥

j | >, can be
modeled by a scale invariant law whereA0 is a constant:

log < |w⊥
j |>' q log(sj) + log A0 (4)

Here, the local scales is related to the local spatial frequency
f by s = 1/f . The scale invariance impliesA(f) = A0 f−q,
which describes the so-called “1/f” noise, a widely used model
for natural objects [1], [3].
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Fig. 4. Log-log plot representing the average size of the wavelet details of the
asteroid 433 Eros as a function of the local scale, illustrating the statistically
scale-invariant behavior of the surface.

This can be seen as a probabilistic model of the wavelet
coefficients. It is closely related to a fractional Brownian
motion [16], used to describe natural images. We extend this
kind of model to natural surfaces (see Fig. 5). This wavelet
transform, like more traditional 2D wavelet transforms, helps
decorrelate the vertex random variables since the surface
exhibits a self-similar behavior. Moreover, it conserves the
number of coefficients since it is critically sampled, therefore
we can reasonably assume that each normal wavelet detail
coefficient can be accurately modeled as an independent
random variable. To simplify, we use a zero-mean Gaussian.
We build the joint distribution according to Eq. (4), and we
defineλj as local roughness parameters:

P (w⊥ |λ, q) ∝ exp

−∑
j

λj s−2q
j

∣∣w⊥
j

∣∣2 (5)

Thus, we construct aspatially adaptivefractal model applica-
ble to a broad range of natural surfaces, whose properties are
generally spatially varying.

On the other hand, the parallel coefficientsw‖ are related
to the smoothness of the surface sampling and their value
should not have any influence on the actual object shape.
A model involving them can be considered as a sampling
regularity prior, whereas the model of Eq. (5) acts as a surface

smoothness prior. We define a simple uniform prior on the
scaled coefficientsw‖

j /sj with the smoothness parameterγ:

P (w‖ | γ) ∝ exp

−γ
∑

j

∣∣w‖
j /sj

∣∣2 (6)

We express the prior distribution of the verticesP (v) in the
wavelet domain instead of the vertex domain byP (w), and
the conditional independence leads toP (w) = P (w⊥)P (w‖).
Then the verticesv are obtained by inverse transform ofw.

Fig. 5. Surfaces generated from the fractal model withq = 1.1 and uniform
roughnessλ (left: λ=0.5, middle: λ=1.5, right: λ=5). We have used the
renderer described in Section II.C. with identical camera and light directions.

B. Hierarchical reflectance model

Images of natural surfaces are the product of albedo and
shading. We propose to model the albedo field using existing
natural image models [17], [18], which capture both the scale
invariance and the spatial adaptivity via a multiresolution ap-
proach. The shading is modeled through a reflectance function
f that depends on the surface geometry (verticesv) and the
observation parametersΘ.

To be more realistic, a model map should be included to
account for the spatial variability of the terrain in real-world
surfaces. This map consists of a discrete random variablemj

for each vertex of indexj, and represents a local class of
terrain (such as rock type, water, forest...); each class relates
to a different albedo and reflectance function. More precisely,
for each value ofm, we have a multiscale albedo model of
prior parametersε, governed by the conditional distribution
P (ε |m), and a parametric reflectance functionfκ with the
corresponding conditional parameter densityP (κ |m).

Thus we define a hierarchical model as follows: there is a
prior distribution of the classes denoted byP (m), then we
have conditional densitiesP (ε |m) and P (κ |m), then the
albedo modelP (ρ | ε) and the reflectance modelfκ.

Let us focus on the albedo density. We can derive a
multiscale model based on wavelets on a mesh, inspired from
the geometry model. To ensure the physical constraints on the
albedo, let us first define a modified albedoρ̃ ∈ R such that
ρ = µ(ρ̃) and ρ ∈ [0, 1]. We chooseµ(x) = (1 + e−x)−1

which is a bijective sigmoid, so that we can easily use the
density of ρ̃ instead of the density ofρ. Therefore, we need
to use the Jacobianµ′:

P (ρ | ε) = P (ρ̃ | ε) µ′(ρ̃) (7)

We propose to use the same analysis scheme as in the previous
section to derive albedo wavelets. On the mesh, we can first



define the albedos on the same topological sites as the vertices,
then we get one albedo per triangle by averaging over the 3
triangle vertices. This way it is straightforward to apply Eqs.
(1) and (2) using the scalar albedos instead of 3D vertices, in
the prediction scheme as well as in the lifting step. To make
a physical interpretation of the wavelet coefficients, we keep
the same local scale estimatesj related to the local geometry
of the mesh. We denote the scalar albedo wavelet details by
ωj ; their density is then given by:

P (ω | ε) ∝ exp
(
−

∑
j

εj (ωj/sj)
2
)

(8)

The final albedos are thus obtained from the coefficients above
by inverting the wavelet transform, averaging to get one albedo
per triangleρ̃4, then remapping into[0, 1] by the functionµ.

C. Accurate rendering with derivatives

We need to produce an image from a fixed surface model
S and a set of camera and light parametersΘ (this is
called renderingin computer graphics). We assume a pinhole
camera model, which is a simple way to perform perspective
projection, and for the light both a point source at infinity
and an ambient component.Θ contains both internal camera
parameters (such as pixel size and focal length) as well
as external parameters (position and orientation) and light
parameters (direction and intensity). The major challenge is
to compute accurate images, as well as their derivatives, i.e.
how pixel intensities vary with changes to the surface and the
observation parameters. The derivatives are required to per-
form the reconstruction via any gradient-based deterministic
optimization algorithm.

We denote byIp(S, Θ) the rendered intensity for the pixel
p. This intensity is a product between surface albedo and
local shading, which depends on geometry, lighting conditions,
reflectance functions, and camera position and orientation.
Computing accurate pixel intensities requires working in the
object space, which means performing visibility determination
for each pixel using computational geometry. This is the only
way of obtaining an image that precisely corresponds to a 3D
model, which is critical in some cases (see Section III-B).

1) Discrete intensity computation:When there are no oc-
clusions or shadows, the contribution of a triangle4 to a
pixel p is the area of the triangle/pixel intersection polygon
A4

p , times the irradianceL4. We denote this contribution by
the fractional powerW4

p :

W4
p = A4

p L4 (9)

When there are occlusions, the polygon is processed for hidden
surface removal, as explained in paragraph 2 and Fig. 8.

Here the irradiance is assumed to be piecewise constant. We
could use a more accurate piecewise linear model (cf. Phong
model [19]), as it will be discussed in Section III.C.

The total intensity for pixelp is obtained by summing the
fractional powers over the triangles intersecting the pixelp,
i.e. the setV (p), then multiplying them by a space-varying

factorKp encoding the exposure time and various transmission
factors, as well as a geometric attenuation factor.

Ip = Kp

∑
4∈V (p)

W4
p (10)

The irradiance is given by multiplying the direct light source
intensity I?, the albedoρ and the shading functionf , which
depends on the surface orientation (triangle normaln4),
and the camera and lighting directionsuc and u?, through
the incident anglesθ4i , φ4i and the viewing anglesθ4r , φ4r
as defined on Fig. 6. There is also a non-directed light of
intensityI0 that accounts for ambient light and interreflections.
The corresponding shading function is denotedf0 and only
depends on the triangle normal and the viewing direction.

L4 = ρ4
(
I0 f0(θ4r , φ4r ) + I? f(θ4i , φ4i , θ4r , φ4r )

)
(11)

In the following we assume a Lambertian model, but this
can easily be extended to more realistic parametric reflectance
functions as proposed by Oren & Nayar in [20]. Then we
simply havef = cos θ4i = n4·u? andf0 becomes a constant:

L4 = ρ4
(
I0 f0 + I? n4 · u?

)
(12)
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Fig. 6. Illustration of the light and camera directions and corresponding
angles for a triangle4 of the 3D surface.

2) Accurate visibility determination:We have developed a
fast pixel integration method that computes, for each pixel
p, the exact visible areasA4

p of all the projected triangles
4 that overlap this pixel. It is an object-precision technique,
since the size of the pixels does not affect the accuracy. This
is made possible by combining bucket sorting (to build a
list of triangles for each pixel) and depth buffers (to quickly
reject totally hidden triangles), and by restricting the complex
computations to the pixels where they are really required. This
is used for both hidden surfaces and shadows, since shadows
are surfaces hidden from the light source.

We notice that partial triangle occlusions occur only along
curves (projected ridge lines), thus dramatically reducing the
number of pixels of the image that require complex geometric
computations to perform hidden surface removal. Outside
ridge lines, triangles are either fully visible or fully hidden.

First, we determine the occlusion map, by rasterizing each
edge of the mesh that defines a ridge, as follows. The normal
to a triangle is used to test whether the triangle is front-facing



(n4 ·u? > 0) or back-facing. A ridge segment is defined as
an edge separating a front-facing from a back-facing triangle,
such that the front-facing one is the closest to the camera
(otherwise it is a valley), see Fig. 7. The occlusion map is
defined by the set of pixels that intersect the ridge segments.

back

back
∆ front

n
front

n ridge

ridgeu

u*

n

∆

Fig. 7. Leturidge be the oriented edge (according to the front-face triangle)
and the ridge normal the averagenridge = (nfront + nback)/2. The front-
facing triangle4front is closestto the camera⇔ |uridge, u?, nridge| > 0.

Then, we perform occluded surfaces removal only for the
pixels in the occlusion map, which typically represent less than
1% of the image.

The principle of visible surface determination relies on
recursively subtracting all the triangles that are in front of
a particular triangle, thus obtaining a polygon, as shown in
Fig. 8. Such methods exist in computer graphics [21], [22]
but they do not perform recursive triangle subtraction using
large triangular meshes. In addition to the geometry of line
segments we use the topological connectivity of the mesh to
design an algorithm that is robust to vertex and edge align-
ments occurring when intersecting adjacent triangles with a
polygon. The polygon areas involved in the fractional intensity
computation have to be determined, as well as their derivatives.
We keep track of the original mesh vertices that generate all the
geometric intersections involved in the subtraction algorithm
(white vertices on Fig. 8). This way, it is possible to compute
the intensity derivative w.r.t. any vertex, even in the case of
complex occultations involving many vertices.
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3) Computing shadows:Shadow boundaries carry very
important information on the 3D, independent of any albedo
or reflectance estimation errors. Therefore they have to be

taken into account accurately, at sub-pixel level. This is made
possible by reusing the technique described above.

First, an orthographic projection along the light direction
is used to determine, for each triangle, the list of occluding
triangles. Then, for each occluded triangle, the area not in
shadow is determined by subtracting the occluding triangles,
projected using a different projection this time (along the light
direction, but onto the shadowed triangle).

It is also possible to compute shadows at a triangle level, by
determining for each triangle the area visible from the directed
light source (as we do from the camera for hidden surface
removal). Then we define a shadow rate for each triangle as
the visible to total area ratio, which multiplies the second
term in Eq. (12), so that triangles in full shadow will only
receive ambient light. This approximation gives very good
results when the triangles are small.

4) Computing the derivatives:The knowledge of the
derivatives of the image intensity w.r.t. any parameter of the
generative model, such as the surface or the camera and light
parameters, is highly valuable. First, efficientdeterministic
optimizationtechniques require derivatives to estimate model
parameters from observed data. Second, they can help com-
pute theuncertaintyof the generated models by providing a
Gaussian approximation of the model probability distribution.
Moreover, the intensity derivatives can be used to compute the
optical flow related to changes in the vertices or camera pa-
rameters, thus enabling us to addmotion blurto the rendering
scheme.

The basic idea of the computation is the chain rule. All
we need to know is the derivative of any function w.r.t. any
variables this function directly depends on: for instance, the
projection of a vertex only depends on the camera parameters
and the 3D vertex; a fractional areaA4

p only depends on the
projected vertices of4 and the occluding triangles. Let us
denote byU andV arbitrary vectors (such as vertices, albedos
or areas). If we assume that we haven vectorsZi functions of
U, and thatV is a function of allZi, then the corresponding
derivatives are multiplied according to the chain rule to obtain
the derivative ofV w.r.t. U:[

∂V
∂U

]
=

n∑
i=1

[
∂V
∂Zi

] [
∂Zi

∂U

]
(13)

This can be extended to a full derivative tree, encoding to the
hierarchical relations between all variables in the rendering
procedure, from(S,Θ) to the intensitiesIp.

D. Observed image formation model

In principle, the observed image is formed in 3 steps:
1) the projection onto the image plane, which produces a
piecewise constant image since we assumed that the irradiance
is constant over triangles; 2) the convolution by the point
spread function (PSF) of the instrument; 3) the integration
over each pixel. However, an equivalent model consists of
replacing steps 2 and 3 by the convolution with a global PSF
including both instrument and pixel PSF, then point sampling
on a rectangular grid.



Fig. 9. A simulated observed image (blurred and noisy rendering) of the
asteroid 433 Eros surface observed during the NEAR mission (3D model
from the NASA Planetary Data System) [15]. Uniform albedo, Lambertian
reflectance model, ambient/direct light ratio 10%, Gaussian blur (width 2
pixels) and Gaussian noise (variance 1% of the max. image intensity).

If we make the assumption that the global PSF can be
well approximated by a piecewise constant function, made
of linear combinations of the pixel PSF, then steps 2 and 3
can be swapped, and the convolution can be performed by a
discrete filter denotedH, after performing the pixel integration
as explained in the previous sections. Then, we simply add a
discrete convolution step after the rendering, denoted byI ?H.
The proposed rendering technique does not produce aliasing
artifacts since it simulates the image formation process (most
fast rendering algorithms produce aliased edges, since they
rasterize triangles without performing any pixel integration).

The deterministic image formation, including both rendering
and degradation by blur, can be summarized as follows:

• Project the surface vertices onto the image plane;
• Determine the visible areasof each triangle, for each

pixel of the image (paragraph C.2);
• Compute the shadowsfor each triangle (paragraph C.3);
• Compute the irradiance for each visible triangle by

using a reflectance model (Eq. (12));
• Form the intensity I for each pixel by combining visible

areas and irradiance (Eqs. (9)-(10));
• Blur the image by convolution with a discrete PSF.

So far, we have only described the deterministic part of the
image formation. The intensity measure in the camera sensor
is a random process, because of the pixel noise (mainly due
to photon, readout and thermal noise). We assume it can be
modeled by a stationary white Gaussian noise of varianceσ2

p.
This enables us to write the conditional density of an

observed imageX, given the rendered intensityI. This density
is also the likelihood of the parameters(S,Θ):

P
(
X | I(S,Θ)

)
∝ exp

−∑
p

(
X−H?I(S,Θ)

)2

p

2σ2
p

 (14)

The hierarchy of the variables is shown in Fig. 1: each arrow
represents a conditional density, and each leaf node a density
encoding the prior knowledge about the related parameter.
Thus we have the full joint density whereW−1 denotes an
inverse wavelet transform and the Dirac distributionsδ account

for deterministic relations between variables:

P (X, S, Θ) = P (S)P (Θ)P (X | I(S, Θ)) (15)

P (S) = P (q)P (λ)P (γ)P (w⊥ | q, λ)P (w‖ | γ)δ(v−W−1w)
×P (m)P (κ |m)P (ε |m)P (ω | ε)δ(ρ̃−µ(W−1ω))µ′(W−1ω)

All the densities involved in the equation above have been
defined in Sections II.A and II.B. We give an example of
simulated observed image in Fig. 9 for a known surfaceS
and parametersΘ. We show simulations from the geometry
model in Fig. 5 (assuming uniform albedo).

III. POTENTIAL APPLICATIONS AND CHALLENGES

In many cases, computer vision can be seen as the inver-
sion of a generative forward model. When such a model is
probabilistic, a natural way of performing the inversion is via
Bayesian inference [6]. Basically, it consists of computing
a posterior density of the variables of interest, which is
proportional to the joint density defined by the generative
model. In general the full density is difficult to compute, and
one prefers to estimate its maximum, or its mean. Whenever
possible it is also useful to estimate the covariance matrix
of the variables, since it represents the uncertainty on these
variables.

The model presented here can have multiple applications:
we can try to estimate the surface geometry, the albedo map,
the reflectance map, the scattering properties and the fractal
dimension of the surface, etc. We can also estimate the obser-
vation parameters to perform accurate camera calibration, PSF
estimation, light calibration, etc. Estimating the reflectance
map m consists of performing albedo classification. It is
very important to understand that the classification should be
performed on a physically meaningful terrain reflectance, not
on image intensities which are the product of both reflectance
and shading. The proposed model should help carry out such
a classification since it clearly separates these two quantities.

A. Surface recovery from multiple images

Surface recovery consists of inferring the 3D surface model
and the reflectance map from a set of images. As seen from
the generative model the complex interplay between surface
geometry and reflectance maps cannot easily be inverted.
There does not exist a unique relation between an observed
image and the underlying 3D object. However, using multiple
images helps constrain the solution to the inverse problem.
Moreover, the use of priors such as the ones we describe in
this paper further constrains the solution, acting like a regu-
larization process. Then surface inference becomes possible,
as preliminary results have shown.

By restricting the observation parameters (camera parame-
ters and light direction) to avoid shadows and occlusions and
the model to a height field, we have shown that even when
using a simplified version of the accurate renderer described
in this paper,accurate 3D reconstruction is possible from
both simulated [23] and real data. We have also assumed a
Lambertian scattering model. A conjugate gradient algorithm



was used to maximize the posterior density given all the
observed images, with derivatives computed as explained in
paragraph II.C.4.

A physical model of the Duckwater, Nevada, area was
constructed from the USGS digital elevation map. A CMOS
panchromatic camera was used to image this model in sunlight
(see Fig. 10). Camera pose and internal parameters were
determined using the background checkerboard, and the sun
angle was measured using a sundial. The inference started with
a level surface, and converged to an estimate that is close to
the original model (see Fig. 11): we obtained a maximum
error less than 15mm with a 2m distance between camera
and model. No existing stereo reconstruction method gave
acceptable results in this case.

We have done another experiment with a spatially variable
albedo, by painting the same physical model mentioned above
(see Fig. 12). The same inference procedure has been used,
but this time the albedo was allowed to vary. The inferred
surface geometry shows RMS errors between 1 and 2mm, and
maximum errors usually less than 10mm, which is better than
in the constant albedo case. The results are shown in Fig. 13.
The albedos look acceptable but their precision can not be
quantified, since they have been added by hand (there is no
ground truth).

Having a textured surface obviously helps reconstruct the
3D geometry. However, we have noticed some interaction
between albedo and geometry, where abrupt albedo differences
generate false slopes. To a lesser degree, the same problem oc-
curs with extended albedo differences: smooth albedo variation
generates shallow slopes in the heights.

We have demonstrated the feasibility, and the reduced com-
putational complexity, of the posterior density optimization
using intensity derivatives w.r.t. model parameters, in the case
of height fields. By using wavelets on subdivided meshes
as explained in Section II.A, it should be possible to infer
objects of arbitrary topology such as entire planets, or aster-
oids. We have to investigate various ways of performing the

Fig. 10. One of the 16 observed images in our constant albedo experiment,
showing the checkerboard and the sun dial used for sun calibration.
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Fig. 11. a: estimated geometry model;b: original topography. The units are
millimeters.1: 3D view of the height fieldz = f(x, y); 2: contour plotz =
const, with contours every 10mm.



optimization, for instance allowing the vertices to move in any
direction, or constraining them to move along the local surface
normal. When working in arbitrary topology, the initial mesh
has to be deformed to fit the data. There are multiple solutions
corresponding to various ways of arranging sampling points
on the same surface. The mesh regularity prior described in
this paper needs to be added to facilitate the optimization and
improve the sampling regularity of the surface.

The generic model-based vision approach presented here
avoids most of the shortcomings of existing methods in surface
recovery, such as shape from shading [24] and shape from
stereo [25]. The former is difficult to apply when the albedo
is spatially variable, while the latter usually produces a sparse
point set as a surface estimate. We can reconstruct continuous
surfaces from multiple images, using different viewpoints and
various lighting conditions.

Fig. 12. One of the 8 observed images in our variable albedo experiment.

B. Super-resolution

Nothing prevents us from increasing the model resolution
arbitrarily, thus achieving so-calledsuper-resolution. However,
there are some practical limitations such as the cutoff fre-
quency of the optical system, and the limited amount of (noisy)
data. We need to make certain that the design of the generative
model does not bring any further shortcomings.

First, when surface triangle projections on the image plane
are smaller than the pixel, which happens with increased
surface resolution, computing accurate intensities in the object
space is essential. Classical algorithms in computer graphics
can not be used, because they perform image-based computa-
tions which are too approximate in this case. That is why we
insisted on building an accurate rendering algorithm.

Second, the blur model shall preserve the spatial information
of the high-resolution surface. For instance, a small projected
triangle entirely contained in a pixel should produce a slightly
different rendering when moved within the pixel. This is
difficult with the current integration scheme which computes
the area of visibility polygons; we believe it would be made
possible by also computing the first order moments, because
they are sensitive to the polygon location, even with small

a

b

c

Fig. 13. a: inferred albedo field (black=0, white=1);b: inferred geometry
model;c: original topography. The units are millimeters. The topography was
rendered using Matlab, with the same color maps and limits, emphasized by
a directed light.



triangles. A continuous displacement of tiny triangles would
then result in a continuous variation of the rendered intensity.

C. Data fusion

Using this unified approach that takes into accountalbedo,
geometry and lightingthrough a 3D surface model and an
imaging model, it should be possible to use all the existing
observations from a scene to build a single model that con-
tains (almost) all the information present in this data. The
observations include multiple images, with both geometric and
shading content, but other modes (such as existing elevation
models or odometry) could be included. Efficientdata fusion
[26] could be performed by building up a single model from
multiple data sources. By computing the parameter uncertain-
ties, it is possible to perform recursive updates of the model
using a method such as the Kalman filter [27], instead of the
estimation from all the data sources simultaneously which may
be intractable with large volumes of data.

IV. CONCLUSION

We have proposed a detailed generative model to explain
how both a complex natural surface and a realistic image of
it is formed. When inverted within a Bayesian framework,
this model leads to numerous applications in computer vision,
such as surface recovery and camera calibration. It also has the
potential to perform data fusion from large data sets, and to
estimate reflectance and roughness properties of real surfaces.

We have demonstrated the feasibility of the proposed ap-
proach by reconstructing a 3D object from real images, using
a simplified model. These results are promising, and we
believe that more complex cases (such as occlusions, shadows,
super-resolved surface and non-Lambertian reflectors) could
be addressed by using a more accurate forward model such as
the one we describe in this paper.
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